Статистичні методи вимірювання взаємозв'язків та їх роль у прогнозуванні економічних показників
На першому етапі при невеликому обсязі сукупності доцільно будувати кореляційне поле, яке дозволяє зробити висновок відносно форми лінії регресії. Різні явища по-різному реагують на зміну факторів. Для того щоб відобразити характерні особливості зв’язку конкретних явищ, статистика використовує різні за функціональним видом регресійні рівняння. Якщо зі зміною фактора х результат у змінюється… Читати ще >
Статистичні методи вимірювання взаємозв'язків та їх роль у прогнозуванні економічних показників (реферат, курсова, диплом, контрольна)
Усі явища навколишнього світу, соціально-економічні зокрема, взаємозв'язані й взаємозумовлені. У складному переплетенні всеохоплюючого взаємозв'язку будь-яке явище є наслідком дії певної множини причин і водночас — причиною інших явищ. Причини та наслідки пов’язані неперервними ланцюгами прямо або опосередковано. Поряд із причинними існують зв’язки паралельних явищ, на які впливає спільна причина.
Визначальна мета вимірювання взаємозв'язків — виявити і дати кількісну характеристику причинних зв’язків. Суть причинного зв’язку полягає в тому, що за певних умов одне явище спричинює інше. Причина сама по собі не визначає наслідку, останній залежить також від умов, в яких діє причина. Вивчаючи закономірності зв’язку, причини та умови об'єднують в одне поняття «фактор». Відповідно ознаки, які характеризують фактори, називаються факторними, а ті, що характеризують наслідки, — результативними.
Аналіз характеру взаємозв'язків та оцінювання сили впливу факторів на результат є передумовою розробки науково обґрунтованих управлінських рішень, прогнозування й регулювання складних соціально-економічних явищ і процесів.
Розрізняють два типи зв’язків — функціональні та стохастичні. У разі функціонального зв’язку кожному значенню фактора х відповідає одне або кілька чітко визначених значень у.
Стохастичні зв’язки виявляються як узгодженість варіації двох чи більше ознак. У ланці зв’язку «х у» кожному значенню ознаки х відповідає певна множина значень ознаки у, які утворюють так званий умовний розподіл. Стохастичний зв’язок, відбиваючи множинність причин і наслідків, виявляється в зміні умовних розподілів.
Якщо умовні розподіли замінюються одним параметром — середньою, то такий зв’язок називають кореляційним. Отже, кореляційний зв’язок є різновидом стохастичного і виявляється зміною середніх умовних розподілів.
В регресійному аналізі оцінюється теоретична лінія регресії. Важливою характеристикою кореляційного зв’язку є лінія регресії — емпірична в моделі аналітичного групування і теоретична в моделі регресійного аналізу. На відміну від емпіричної, теоретична лінія регресії неперервна. Оцінка теоретичної лінії регресії здійснюється не в окремих точках, а в кожній точці інтервалу зміни факторної ознаки.
На першому етапі при невеликому обсязі сукупності доцільно будувати кореляційне поле, яке дозволяє зробити висновок відносно форми лінії регресії. Різні явища по-різному реагують на зміну факторів. Для того щоб відобразити характерні особливості зв’язку конкретних явищ, статистика використовує різні за функціональним видом регресійні рівняння. Якщо зі зміною фактора х результат у змінюється більш-менш рівномірно, такий зв’язок описується лінійною функцією.
На другому етапі визначають параметри рівняння регресії методом найменших квадратів, основною умовою якого є мінімізація суми квадратів відхилень емпіричних значень від теоретичних.
На третьому етапі відбувається визначення тісноти зв’язку. Для такої перевірки істотності зв’язку можна використовувати характеристику F-критерій (критерій Фішера).
На четвертому етапі проводять перевірку істотності зв’язку у регресивному аналізі здійснюють за допомогою тих же що і в аналітичних групуваннях. Значущість зв’язку можна перевірити за допомогою таблиць критичних значень коефіцієнта детермінації. Якщо фактичне значення перевищує критичне, це свідчить про істотність зв’язку між факторною та результативною ознаками.
У багатьох випадках на результативну ознаку впливає не один, а кілька факторів. Між факторами існують складні взаємозв'язки, тому їхній вплив на результативну ознаку с комплексним, а не просто сумою ізольованих впливів Багатофакторний кореляційно-регресійний аналіз дає змогу оцінити міру впливу на досліджуваний результативний показник кожного із введених у модель факторів при фіксованому положенні на середньому рівні інших факторів Важливою умовою с відсутність функціонального зв’язку між факторами.
Коефіцієнти парної кореляції характеризують тісноту зв’язку між показниками з врахуванням взаємозв'язків факторів, що впливають на результативний показник. Приватний коефіцієнт кореляції виражає тісноту зв’язку між двома ознаками при усуненні змін, викликаних впливом інших ознак. Розрахунок рівняння регресії проводиться зазвичай кроковим способом. Спочатку враховується один фактор, який робить найбільш значущий вплив на результативний показник, потім другий, третій і далі послідовно. На кожному кроці розраховуються рівняння зв’язку, множинний коефіцієнт кореляції і детермінації, критерій Фішера й інші показники, що оцінюють надійність рівняння.
Висновки до першого розділу Статистична методологія — комплекс спеціальних, притаманних лише статистиці методів і прийомів дослідження, що ґрунтується на загально філософських і загальнонаукових принципах, і який складається з трьох етапів: збирання статистичного матеріалу, групування зібраного статистичного матеріалу та аналіз варіації, динаміки, взаємозв'язків. Статистичні дані за формою зображення можуть подаватися у вигляді числових масивів, таблиць чи графіків.
Середня величина — узагальнююча міра ознаки, що варіює, у статистичній сукупності, дає кількісну характеристику масових соціально-економічних явищ та процесів. Показник у формі середньої характеризує рівень ознаки в розрахунку на одиницю сукупності.
За допомогою середніх величин вирішуються такі завдання статистичного дослідження: характеристика досягнутого рівня розвитку явища або процесу; порівняння показників, обчислених по різних сукупностях; характеристика розвитку (варіації) явища у часі та просторі; вивчення взаємозв`язку між показниками.
Усі явища навколишнього світу взаємозв'язані й взаємозумовлені. Розрізняють два типи зв’язків: функціональні та стохастичні. Функціональнму зв’язку кожному значенню фактора х відповідає одне або кілька чітко визначених значень у. Стохастичні зв’язки виявляються як узгодженість варіації двох чи більше ознак. У ланці зв’язку «х у» кожному значенню ознаки х відповідає певна множина значень ознаки у, які утворюють так званий умовний розподіл. Якщо умовні розподіли замінюються одним параметром — середньою, то такий зв’язок називається кореляційним.
Кореляційною залежністю між двома змінними величинами називається така функціональна залежність, яка існує між значеннями однієї з них та груповими середніми іншої.