Про систему задач для вивчення інтеграла
Відомо, що міцні, стійкі і гнучкі вміння формуються тоді, коли вони застосовуються разом із раніше здобутими уміннями і навичками. Саме таким чином знову сформовані уміння включаються у систему знань і умінь учнів. До того ж розв’язування задач, які потребують застосування раніше отриманих знань, істотно допомагає закріпленню вивченого і сприяє формуванню важливого вміння застосовувати знання в… Читати ще >
Про систему задач для вивчення інтеграла (реферат, курсова, диплом, контрольна)
Про систему задач для вивчення інтеграла.
Система задач для вивчення первісної та інтеграла в навчальному посібнику (1) недостатньо досконала. Завдання тут в основному зводяться до обчислення площ фігур (№ 1022−1027, 1037−1042, 1081−1087) і інтеграла (1028−1036, 1071−1080), тобто, так як і в задачниках з математичного аналізу для втузів, мають тренувальний характер. Між тим відомо, що різноманітність задач допомагає краще засвоїти вивчаюче поняття, його різні прояви. До того ж у запропонованих в (1) задачах недостатньо використовуються раніше засвоєні знання, поняття інтеграла тим самим немов ізолюється від іншого курсу алгебри та початків аналізу, при розв’язуванні задач не закріпляються раніше здобуті знання.
В методичній літературі є деякі спроби спростити систему вправ для вивчення первісної та інтеграла. Так, наведені деякі вправи у збірнику задач (3), але в більшості вони важкі для учнів XI класу й іноді далеко виходять за рамки шкільної програми. Деякі цікаві і змістовні вправи є в (4), (2), (5), але тут поміщені тільки деякі задачі.
В цій статті пропонуються задачі, для розв’язку яких крім знань про інтеграл застосовуються знання, уміння і навички з інших розділів алгебри і початків аналізу. При цьому розширюється клас функцій, інтеграли від яких можуть бути обчисленні учнями XI класу, досягається необхідна різноманітність задач, піднімається зацікавленість учнів у вивченні цього розділу програми.
I.
Відомо, що міцні, стійкі і гнучкі вміння формуються тоді, коли вони застосовуються разом із раніше здобутими уміннями і навичками. Саме таким чином знову сформовані уміння включаються у систему знань і умінь учнів. До того ж розв’язування задач, які потребують застосування раніше отриманих знань, істотно допомагає закріпленню вивченого і сприяє формуванню важливого вміння застосовувати знання в різноманітних ситуаціях.
На уроках у XI класі будуть корисними задачі, в яких знаходженню первісної (обчисленню інтеграла) передувало б спрощення або перетворення формули, що задає функцію. Такі наступні задачі.
Знайдіть яку-небудь первісну для заданої функції:
;
;
;
;
;
;
;
.
Обчисліть інтеграл, виконавши перед тим необхідні перетворення підінтегральної функції:
;
;
;
;
;
;
;
;
;
;
.
.
3*. Перетворивши підінтегральну функцію, обчисліть інтеграл:
;
;
;
.
Додаткового часу, як і додаткових завдань, для розгляду наведених задач фактично не потрібно: їхній розв’язок потрібно зв’язати з повторенням.
Можна пропонувати і такі задачі на обчислення інтегралів, які потребують більш складніших перетворень тригонометричних виразів.
4*. Обчисліть інтеграл:
;
;
;
;
;
.
Розв’язок задачі 4 (д):
Задачі 3−4 корисно розглядати на позакласних або факультативних заняттях.
Принесе користь розв’язування і наступних задач.
5. Обчисліть, попередньо перетворивши підінтегральну функцію:
;
;
;
.
До цього часу розглядалися вправи, в яких потрібно було обчислити інтеграл, використовуючи для цього відомості із попереднього курсу алгебри і математичного аналізу. Але і задачам, в яких інтеграл відіграє допоміжну роль, потрібно відвести час на уроках або позакласних заняттях. Ось приклади таких вправ.
6. Розв’яжіть рівняння:
;
;
.
і є коренем рівняння:
;
.
.
для яких правильна нерівність:
;
<4.
10*. Знайдіть найменше і найбільше значення інтеграла:
;
.
II.
Глибоке розуміння геометричного змісту інтеграла допомагає як обчислювати площі різних фігу, так і знаходити числові значення інтегралів, обчислювати які за відомими вивчаючими формулами не вдається.
Скориставшись геометричним змістом інтеграла, можна знаходити числові значення інтеграла від деяких функцій, методи інтегрування яких не відомі учням, а площі фігур, обмежених графіками підінтегральних функцій, можна обчислювати і без допомоги інтеграла.
11. Виходячи із геометричного змісту інтеграла обчисліть:
;
;
;
;
;
.
В деяких випадках обчисленню інтеграла допомагають і додаткові міркування, наприклад застосування симетрії.
.
.
Рис. 1.
(рис. 2б). Тепер площу заштрихованого трикутника (а він конгруентний трикутнику на рис. 2а) можна обчислити за допомогою інтеграла, але вже від функції, оберненої до арксинуса, тобто від функції синус:
. Це і є первісна арксинуса.
Рис. 2.
Таким самим чином можна знайти первісну ще для деяких функцій, попередньо встановивши, яка функція обернена до даної. Показаний прийом можна застосувати і для обчислення площ (див. [6]).
.
14*. Обчисліть:
;
;
15*. Знайдіть функції, обернені до даних, і які-небудь первісні для обернених функцій:
;
.
16*. Виберіть обернену функцію, первісна якої відома, і знайдіть одну із первісних оберненої функції.
III.
Необхідно попереджати можливість формального підходу до обчислення інтегралів. Перед тим як обчислювати інтеграл, потрібно переконатися, що на відрізку інтегрування існує первісна підінтегральної функції: формула Нютона-Лейбніца використовується тільки для неперервних функцій, а вони мають первісну. Щоб не було непорозумінь, корисно привчати учнів перед формальним інтегруванням встановлювати, чи неперервна задана (під інтегралом) функція. З цією метою корисно розглянути наступну задачу:
.
Чи правильні ці рівності? Якщо ні, то в чому заключається помилка?
функція не є неперервною.
Дальше, час від часу, корисно пропонувати поряд із інтегралами від неперервних функцій і такі задачі, обчислення інтеграла в яких недопустиме через розрив функції на відрізку інтегрування, а також наступні задачі.
;
19*. При яких значеннях границі інтегрування існують наступні інтеграли:
;
20*. Обчисліть:
;
.
якщо це можливо.
. В задачі 20 (б) підінтегральна функція на відрізку інтегрування не визначена.
Запропоновані задачі, без сумніву, будуть допомагати свідомомому засвоєнню поняття первісної та інтеграла. Частина з них може бути розв’язаною на уроці, деякі, помічені зірочками, краще пропонувати на позакласних або факультативних заняттях.
PAGE 6.
x.
y.
— 1.
б).
а).
t.