Методи, засновані на геометричних характеристиках обличчя
Один з найперших методів — це аналіз геометричних характеристик обличчя. Спочатку застосовувався в криміналістиці і був там детально розроблений. Потім з’явилися комп’ютерні реалізації цього методу. Суть його полягає у виділенні набору ключових точок (або областей) обличчя і подальшому виділенні набору ознак. Кожна ознака є або відстанню між ключовими точками, або відношенням таких відстаней. На… Читати ще >
Методи, засновані на геометричних характеристиках обличчя (реферат, курсова, диплом, контрольна)
Один з найперших методів — це аналіз геометричних характеристик обличчя. Спочатку застосовувався в криміналістиці і був там детально розроблений. Потім з’явилися комп’ютерні реалізації цього методу. Суть його полягає у виділенні набору ключових точок (або областей) обличчя і подальшому виділенні набору ознак. Кожна ознака є або відстанню між ключовими точками, або відношенням таких відстаней. На відміну від методу порівняння еластичних графів тут відстані вибираються не як дуги графів. Набори найбільш інформативних ознак виділяються експериментально.
Ключовими точками можуть бути кути очей, губ, кінчик носа, центр ока і т.п. Як ключові області можуть бути прямокутні області, що включають очі, ніс, рот [13].
Рисунок 10. Ідентифікаційні точки і відстані.
В процесі розпізнавання порівнюються ознаки невідомого обличчя з ознаками, що зберігаються в базі. Задача знаходження ключових точок наближається до трудомісткості безпосередньо розпізнавання, і правильне знаходження ключових точок на зображенні багато в чому визначає успіх розпізнавання. Тому зображення обличчя людини повинне бути без шумів, що заважають процесу пошуку ключових точок. До таких завад відносять окуляри, бороди, прикраси, елементи зачіски і макіяжа. Освітлення бажане рівномірне і однакове для всіх зображень. Крім того, зображення обличчя повинно мати фронтальний ракурс, можливо з невеликими відхиленнями. Вираз обличчя повинен бути нейтральним. Це пов’язано з тим, що в більшості методів немає моделі врахування таких змін.
Таким чином, даний метод пред’являє строгі вимоги до умов зйомки, потребує надійного механізму знаходження ключових точок для загального випадку. Крім того, потрібне застосування досконаліших методів класифікації або побудови моделі змін. У загальному випадку цей метод не найоптимальніший, проте, для деяких специфічних задач перспективний. До таких задач можна віднести документарний контроль, коли вимагається порівняти зображення обличчя, одержаної у нинішній момент з фотографією в документі. При цьому інших зображень цієї людини немає, і, отже, механізми класифікації, засновані на аналізі тренувального набору, недоступні.