Допомога у написанні освітніх робіт...
Допоможемо швидко та з гарантією якості!

Еволюція Всесвіту. 
Концепція розвитку та еволюція Всесвіту

РефератДопомога в написанніДізнатися вартістьмоєї роботи

Результаты наблюдения галактики М —87 позволяют предполагать, что в непосредственной близости от ее центра сконцентрирована слабосветящаяся масса, превосходящая 5 млрд солнечных масс. Похожие результаты получены и для других галактик. Может быть, это и есть гигантские черные дыры или какие-то другие сверхплотные образования пока неизвестной природы. Существование черных Дыр следует из общей… Читати ще >

Еволюція Всесвіту. Концепція розвитку та еволюція Всесвіту (реферат, курсова, диплом, контрольна)

Основные концепции космологии. Вселенная — самая крупная материальная система. Ее происхождение интересует людей еще с древних времен. В начале Вселенная была «безвидна и пуста» (Быт. 1, 2}, — так сказано в Библии. Сначала был вакуум — уточняют современные физики. Каковы же истоки происхождения Вселенной? Как она развивается? Каковы причины ее возникновения? На эти и другие вопросы пытались ответить ученые разных времен. Однако получить полностью исчерпывающие ответы на них до сих пор не удалось, В этой связи нельзя не вспомнить слова известного поэта М. Волошина:

«Мы, возводя соборы космогонии, Не внешний в них отображаем мир, А только грани нашего незнанья».

Тем не менее принято считать, что основные положения современной космологии— науки о строении и эволюции Вселенной — начали формироваться после создания в 1917 г. А. Эйнштейном первой релятивистской модели, основанной на теории гравитации и претендовавшей на описание всей Вселенной. Эта модель характеризовала стационарное состояние Вселенной и, как показали астрофизические наблюдения, оказалась неверной.

Важный шаг в развитии космологии сделал в 1922 г. профессор Петроградского университета А. А. Фридман (1888—1925). В результате решения космологических уравнений он пришел к выводу: Вселенная не может находиться в стационарном состоянии — она должна расширяться либо сужаться.

Следующий шаг был сделан в 1924 г., когда в обсерватории Маунт Вилсон в Калифорнии американский астроном Э. Хаббл (1889— 1953) измерил расстояние до ближайших галактик (в то время называемых туманностями) и тем самым открыл мир галактик. В 1929 г. в той же обсерватории Э. Хаббл по красному смещению линий в спектре излучения галактик экспериментально подтвердил теоретический вывод А. А. Фридмана о расширении Вселенной и установил эмпирический закон — закон Хаббла: скорость удаления галактики V прямо пропорциональна расстоянию r до нее, т. е.

V = Hr,.

где H — постоянная Хаббла.

С течением времени постоянная Хаббла постепенно уменьшается — разбегание галактик замедляется. Но такое уменьшение за наблюдаемый промежуток времени ничтожно мало. Обратной величиной постоянной Хаббла определяется время жизни (возраст) Вселенной.

Из результатов наблюдения следует, что скорость разбегания галактик увеличивается примерно на 75 км/с на каждый миллион парсек (1 парсек равен 3,3 светового года; световой год— это расстояние, проходимое светом в вакууме за 1 земной год). При данной скорости экстраполяция к прошлому приводит к выводу: возраст Вселенной составляет около 15 млрд лет, а это означает, что вся Вселенная 15 млрд лет назад была сосредоточена в очень маленькой области. Предполагается, что в то время плотность вещества Вселенной была сравнимой с плотностью атомного ядра, и вся Вселенная представляла собой огромную ядерную каплю. По каким-то причинам ядерная капля оказалась в неустойчивом состоянии и взорвалась. Это предположение лежит в основе концепции большого взрыва.

Произведением времени жизни Вселенной на скорость света определяется радиус космологического горизонта — граница познания Вселенной посредством астрономических наблюдений. Информация об объектах за космологическим горизонтом до нас еще не дошла — мы не можем заглянуть за космологический горизонт. Несложный расчет показывает, что радиус космологического горизонта равен приблизительно 1026 м. Очевидно, что этот радиус ежесекундно увеличивается примерно на 300 тыс. км. Но такое увеличение ничтожно мало по сравнению с величиной радиуса космологического горизонта. Для наблюдения заметного расширения космологического горизонта нужно подождать миллиарды лет.

В концепции большого взрыва предполагается, что расширение Вселенной происходило с одинаковой скоростью, начиная с момента взрыва ядерной капли. В настоящее время обсуждается и другая гипотеза — гипотеза пульсирующей Вселенной: Вселенная не всегда расширялась, а пульсирует между конечными пределами плотности. Из нее следует, что в некотором прошлом скорость удаления галактик была меньше, чем сейчас, и были периоды, когда Вселенная сжималась, т, е. галактики приближались друг к другу и с тем большей скоростью, чем большее расстояние их разделяло.

По мере развития естествознания и особенно ядерной физики выдвигались различные гипотезы о физических процессах на разных этапах космологического расширения. Одна из них предложена в конце 40-х годов XX в. Г. А. Гамовым (1904— 1968), физиком-теоретиком, эмигрировавшим в 1933 г. из Советского Союза в США, и называется моделью горячей Вселенной. В ней рассмотрены ядерные процессы, протекавшие в начальный момент расширения Вселенной в очень плотном веществе с чрезвычайно высокой температурой. По мере расширения Вселенной плотное вещество охлаждалось.

Из этой модели следуют два вывода:

  • — вещество, из которого зарождались первые звезды, состояло в основном из водорода (75%) и гелия (25%);
  • — в сегодняшней Вселенной должно наблюдаться слабое электромагнитное излучение, сохранившее память о начальном этапе развития Вселенной, и поэтому названное реликтовым.

С развитием астрономических средств наблюдения и, в частности, с рождением радиоастрономии, появились новые возможности познания Вселенной. В 1965 г. американские астрофизики А. Пензиас (р. 1933) и Р. Вильсон (р. 1936) экспериментально обнаружили реликтовое излучение, за что были удостоены в 1978 г. Нобелевской премии. Реликтовое излучение — это фоновое изотропное космическое излучение со спектром, близким к спектру излучения абсолютно черного тела с температурой около 3 К. Оно наблюдается на волнах длиной от нескольких миллиметров до десятков сантиметров.

В 2000 г. сообщалось: сделан важный шаг на пути понимания самого раннего этапа эволюции Вселенной. В лаборатории Центра европейских ядерных исследований в Женеве получено новое состояние материи — кварк-глюонная плазма. Предполагается, что в таком состоянии Вселенная находилась в первые 10 мкс после большого взрыва. До сих пор удавалось охарактеризовать эволюцию материи на стадии не ранее трех минут после взрыва, когда уже сформировались ядра атомов.

Образование объектов Вселенной. В 1963 г. на очень больших расстояниях от нашей Галактики, на границе наблюдаемой Вселенной, обнаружены удивительные объекты, получившие название квазаров. При сравнительно небольших размерах (поперечник их составляет несколько световых недель или месяцев) квазары выделяют колоссальную энергию, примерно в 100 раз превосходящую энергию излучения самых гигантских галактик, состоящих из десятков и сотен миллиардов звезд. Какие физические процессы могут приводить к выделению столь грандиозного количества энергии, пока неясно.

Астрономы обратили внимание на определенное сходство между квазарами и активными ядрами некоторых галактик. Квазары — весьма удаленные объекты. А чем дальше от нас находится тот или иной космический объект, тем в более отдаленном прошлом мы его наблюдаем, что обусловливается конечной скоростью распространения электромагнитного излучения, в том числе и света. Хотя скорость света велика — около 300 тыс. км/с, но даже при такой огромной скорости для преодоления космических расстояний необходимы десятки, сотни и даже миллиарды лет. Мы наблюдаем объекты Вселенной — Солнце, планеты, звезды, галактики— в прошлом. Причем различные объекты — в разном прошлом. Например, Полярную звезду— такой, какой она была около шести веков назад. А галактику в созвездии Андромеды мы наблюдаем с опозданием на 2 млн лет.

Квазары удалены от нас на миллиарды световых лет. Галактики с активными ядрами в среднем расположены ближе. Следовательно, они принадлежат объектам более позднего поколения, т. е. образовались после рождения квазаров. Возникает вопрос: не являются ли квазары протоядрами будущих галактик, теми «зародышами», вокруг которых впоследствии сформировались десятки и сотни миллиардов звезд — звездные острова Вселенной? При попытке ответить на эти вопросы родилась гипотеза о черных дырах. Сущность ее заключается в следующем. Если некоторая масса вещества оказывается в сравнительно небольшом объеме, критическом для нее, то под действием сил собственного тяготения такое вещество начинает неудержимо сжиматься. Наступает своеобразная гравитационная катастрофа— гравитационный коллапс.

В результате сжатия растет концентрация вещества. Наконец наступает момент, когда сила тяготения на ее поверхности становится столь велика, что для ее преодоления надо развить скорость, превосходящую скорость света. Такие скорости практически недостижимы, и из замкнутого пространства черной дыры не могут вырваться ни лучи света, ни частицы материи. Излучение черной дыры оказывается «запертым» гравитацией. Черные дыры способны только поглощать излучение. На рисунке изображена воображаемая картина прохождения лучей вблизи черной дыры. Луч, проходящий на близком расстоянии от нее, поглощается, а более отдаленные лучи искривляются.

Эволюция Вселенной. Концепция развития и эволюция Вселенной.

Предполагается, что образование черных дыр во Вселенной происходит различными путями. Например, они могут возникать в результате сжатия массивных звезд на заключительных стадиях их жизни или вследствие концентрации вещества в центральных частях достаточно массивных звездных систем. В частности, в ядрах галактик и квазарах могут находиться сверхмассивные черные дыры.

Результаты наблюдения галактики М —87 позволяют предполагать, что в непосредственной близости от ее центра сконцентрирована слабосветящаяся масса, превосходящая 5 млрд солнечных масс. Похожие результаты получены и для других галактик. Может быть, это и есть гигантские черные дыры или какие-то другие сверхплотные образования пока неизвестной природы. Существование черных Дыр следует из общей теории относительности, и об их астрономическом открытии говорить не приходится. Совершенно другой точки зрения на данную проблему придерживаются известный российский специалист в области квантовой теории поля, выдающийся ученый, академик РАН А. А. Логунов (р. 1926) и его последователи. Исходя из понимания гравитации как проявления реального физического поля, а не как следствия искривления пространства — времени в соответствии с общей теорией относительности, ученые находят логическое объяснение наблюдаемым в мегамире явлениям, не прибегая к понятию черной дыры.

Сравнительно недавно основные положения космологии базировались на идеях классической физики. Развитие рассматривалось как медленный и плавный процесс перехода от одного стационарного состояния к другому. Считалось, что звезды постепенно рассеивают свое вещество, и оно накапливается в виде гигантских туманностей. Туманности сгущаются в звезды и т. д. Однако наблюдения последних десятилетий свидетельствуют и о другом: в развитии материи во Вселенной играют определенную роль и нестационарные процессы, в частности, взрывные процессы. Можно предполагать, что нестационарные процессы представляют собой своеобразные поворотные пункты в развитии космических объектов, где совершаются переходы из одного качественного состояния в другое, образуются новые небесные тела — происходит самоорганизация Вселенной.

Вопрос об образовании космических объектов в результате нестационарных процессов и о самоорганизации Вселенной еще окончательно не решен. Кроме того, одна из важных проблем современного естествознания состоит в том, чтобы установить, в каком физическом состоянии находилось вещество до начала расширения Вселенной. Видимо, это было состояние чрезвычайно высокой плотности. Для описания явлений, происходящих при столь высокой плотности, современные фундаментальные физические теории, к сожалению, неприменимы. При таких условиях проявляются не только гравитационные, но и квантовые эффекты, характерные для процессов микромира, А теории, которая объединяла бы их, пока нет — ее предстоит создать.

Одно из предположений, следующих из концепции самоорганизации, заключается в том, что первоначальный сгусток материи возник из физического вакуума. Физический вакуум, как уже отмечалось, — своеобразная форма материи, способная при определенных условиях «рождать» вещественные частицы без нарушения законов сохранения материи и движения, Последние столетия принесли немало открытий, приблизивших человечество к тайнам рождения Вселенной. Все известные к настоящему времени концепции эволюции Вселенной, в том числе основанной на самоорганизации, носят гипотетический характер. Какие же причины могли привести к образованию упорядоченной структуры Вселенной? На этот и другие вопросы пока нет ясных и понятных ответов. «Сколько бы миллионов раз ни бросать кубик с буквами, строчки стихов из них никак не получатся. А вселенная, которая окружает нас, гораздо сложнее, чем самая сложная машина и полна гораздо большего смысла, чем самое глубокомысленное стихотворение», — утверждал в древние времена Цицерон (106 — 43 до н. э.), римский оратор и писатель.

Вселенная в широком смысле — это среда нашего обитания. Поэтому важно помнить: во Вселенной господствуют необратимые физические процессы, и она изменяется с течением времени, находится в постоянном развитии. Человек приступил к освоению космоса, вышел в открытое космическое пространство. Наши свершения приобретают все больший размах, глобальные космические масштабы. И для того чтобы учесть их близкие и отдаленные последствия, те изменения, которые они могут внести в среду нашего обитания, мы должны изучать не только земные, но и космические явления и процессы.

Показати весь текст
Заповнити форму поточною роботою