Реалізація моделі інтелектуального аналізу в середовищі ms sql server 2005
Модель інтелектуального аналізу даних застосовує алгоритм інтелектуального аналізу до даних, представлених структурою інтелектуального аналізу даних. Модель інтелектуального аналізу даних, як і структура інтелектуального аналізу, містить стовпці. Модель інтелектуального аналізу міститься в структурі інтелектуального аналізу і успадковує всі значення властивостей, визначених цією структурою… Читати ще >
Реалізація моделі інтелектуального аналізу в середовищі ms sql server 2005 (реферат, курсова, диплом, контрольна)
Принцип роботи з моделлю інтелектуального аналізу по алгоритму асоціативних правил
Для інтелектуального аналізу даних в службах Microsoft SQL Server 2005 AnalysisServices використовується два основні об'єкти:
структура інтелектуального аналізу даних;
модель інтелектуального аналізу даних.
Останніми об'єктами, що беруть участь в інтелектуальному аналізі даних, є стовпці структури інтелектуального аналізу і стовпці моделі інтелектуального аналізу.
Процес роботи з моделями інтелектуального аналізу полягає в наступному:
- а) створення структури інтелектуального аналізу даних;
- б) додання моделі;
- в) завдання параметрів моделі;
ґ) перегляд моделі;
д) прогнозування моделі.
Структура інтелектуального аналізу — це структура даних, що визначає домен даних, на основі якого будуються моделі інтелектуального аналізу. Одна структура інтелектуального аналізу може містити декілька моделей інтелектуального аналізу даних, що спільно використовують один домен.
Будівельними блоками структури інтелектуального аналізу є стовпці, які описують дані, що містяться в джерелі даних. Ці стовпці містять такі відомості, як тип даних, тип вмісту і способи розподілу даних.
Структура інтелектуального аналізу також може містити певні вкладені таблиці. Вкладена таблиця представляє зв’язок «один до багатьом» між об'єктом варіанту і пов’язаними з ним атрибутами. Наприклад, якщо відомості, що описують клієнта, знаходяться в одній таблиці, а покупки цього клієнта знаходяться в іншій таблиці, то можна використовувати вкладені таблиці для комбінування відомостей в єдиний варіант. Ідентифікатором клієнта є об'єкт, а покупки — пов’язані з ним атрибути.
Модель інтелектуального аналізу даних застосовує алгоритм інтелектуального аналізу до даних, представлених структурою інтелектуального аналізу даних. Модель інтелектуального аналізу даних, як і структура інтелектуального аналізу, містить стовпці. Модель інтелектуального аналізу міститься в структурі інтелектуального аналізу і успадковує всі значення властивостей, визначених цією структурою. Модель може використовувати всі стовпці, що містяться в структурі інтелектуального аналізу даних, або підмножини цих стовпців.
На додаток до параметрів, визначених в структурі інтелектуального аналізу, модель інтелектуального аналізу містить дві властивості: Algorithm і Usage. Параметр algorithm визначений в моделі інтелектуального аналізу, а параметр usage визначений в стовпці моделі інтелектуального аналізу. Опис цих параметрів приводиться нижче:
«Algorithm». Властивість моделі, що визначає алгоритм, використовуваний для створення моделі. У нашому випадку це алгоритм асоціативних правил.
«Usage». Властивість стовпця моделі, що визначає те, як стовпець використовується моделлю. Можна визначити стовпці як стовпці введення, ключові стовпці або прогнозовані стовпці.
Модель інтелектуального аналізу даних до обробки є просто порожнім об'єктом. При обробці моделі дані, визначені структурою, обробляються алгоритмом. Алгоритм ідентифікує правила і закономірності в даних, а потім використовує ці правила і закономірності для заповнення моделі.
Можна створювати декілька моделей, заснованих на одній і тій же структурі. Всі моделі, побудовані на основі однієї і тієї ж структури, мають бути засновані на одному і тому ж джерелі даних. Проте моделі можуть розрізнятися по стовпцях структури, способах їх використання, типові алгоритму для створення кожної моделі і параметрах для кожного алгоритму.
Для кожного алгоритму є свій набір параметрів моделі, які не обходжений визначити. Для моделі «Споживчої корзини» це:
максимальний/мінімальний розмір (max/minitemsetsize) — кількість товару в корзині;
максимальна/мінімальна підтримка (max/minsupport) — кількість спостережень — покупок;
мінімальна значущість (minimportance) — поріг, нижче якого не має сенсу проводити аналіз;
мінімальна вірогідність (minprobability) — вірогідність попадання товару в корзину.
Після обробки моделі її можна проглянути за допомогою призначених для користувача засобів перегляду, що надаються в середовищах BusinessIntelligenceDevelopmentStudio і SQL Server ManagementStudio або шляхом передачі запитів моделі для виконання прогнозів.
Служби Microsoft SQL Server 2005 AnalysisServices дозволяють використовувати прогнозуючий запит на мові розширень інтелектуального аналізу даних DataMiningExtensions (DMX) для прогнозування невідомих значень стовпців в новому наборі даних на основі результатів моделі інтелектуального аналізу даних.