Допомога у написанні освітніх робіт...
Допоможемо швидко та з гарантією якості!

Вивчення систем, еквівалентних системам з відомим типом крапок спокою

КурсоваДопомога в написанніДізнатися вартістьмоєї роботи

Розглянемо систему = f (t, x), x= (x,…, x), (t, x) (1) с безперервної в області D функцією f. Функція U (t, x), задана в деякої під області G області D, називається першим інтегралом системи (1) в області G, якщо для будь-якого рішення x (t), t, системи (1), графік якого розташований в G функція U (t, x (t)), t, постійна, тобто U (t, x (t)) залежить тільки від вибору рішення x (t) і не залежить… Читати ще >

Вивчення систем, еквівалентних системам з відомим типом крапок спокою (реферат, курсова, диплом, контрольна)

Курсова робота

" Вивчення систем, еквівалентних системам з відомим типом крапок спокою"

Реферат

Курсова робота складається з _____ сторінок, 3-х джерел.

Ключові слова: вложима система, з відомим типом крапок спокою, перший інтеграл диференціальної системи, функція, клас систем еквівалентних системі з відомим типом крапок спокою.

Метою курсової роботи є дослідження системи з відомим типом крапок спокою, знаходження першого інтеграла системи, застосування теореми про еквівалентність диференціальних систем.

Зміст

  • Введення
  • 1. Визначення вложимої системи. Умови вложимості
  • 2. Загальне рішення системи
  • 3. Знаходження першого інтеграла диференціальної системи й умови його існування
  • 4. Функція, що відбиває
  • 5. Застосування теореми про еквівалентність диференціальних систем
  • Висновок
  • Список джерел

Введення

У курсовій роботі розглядається вложима система з відомим типом крапок спокою. Як відомо система є вложимою, якщо будь-який компонент цієї системи вложима, тобто система вложима тоді й тільки тоді, коли множина її рішень є підмножиною множини рішень деякої лінійної стаціонарної системи.

В 1−2 м пунктах розглядається вложима система, з відомим типом крапок спокою. Далі перевіряємо чи є x і y загальним рішенням нашої системи рівнянь.

В 3-м ми знаходимо перший інтеграл системи й перевіряємо виконання тотожності.

В 4-м пункті досліджуємо функції, що відбивають

В 5-м пункті застосовуємо теорему про еквівалентність диференціальних систем

1. Визначення вложимої системи. Умови вложимості

Розглянемо диференціальну систему

D. (1)

Будемо називати i-ю компоненту x системи (1) вложимої, якщо для будь-якого рішення x (t) = (x (t),…, x (t)), t, цієї системи функція x t, є многочленом. У такий спосіб i-я компонента системи (1) вложима тоді й тільки тоді, коли для кожного рішення x (t) цієї системи існує лінійне стаціонарне рівняння виду

(2)

для якого є рішенням. Загалом кажучи, порядок і коефіцієнти рівняння (2) залежать від вибору рішення. В окремому випадку, коли компонента будь-якого рішення системи (1) є одночасно й рішенням деякого, загального для всіх рішень рівняння (2), компоненту системи (1) будемо називати сильно вложимої у рівняння (2).

2. Загальне рішення системи

Розглянемо вложиму систему

(1)

(b>0 і а-постійні) із загальним рішенням

якщо з 0;

x=0, y=at+c, якщо з=0, де постійні з, з, зі зв’язані співвідношенням з (b+c +c) =a, має два центри в крапках і. Рішення:

Підставимо загальне рішення

у нашу систему (1) одержимо

=

=c (c cosct-c sinct) =

a;

Для стислості розпишемо знаменник і перетворимо

x +y

+b=

=a+c (c sinct+c cosct)

a;

Одержуємо, що x і y є загальним рішенням системи.

3. Знаходження першого інтеграла диференціальної системи й умови його існування

Розглянемо систему = f (t, x), x= (x,…, x), (t, x) (1) с безперервної в області D функцією f. Функція U (t, x), задана в деякої під області G області D, називається першим інтегралом системи (1) в області G, якщо для будь-якого рішення x (t), t, системи (1), графік якого розташований в G функція U (t, x (t)), t, постійна, тобто U (t, x (t)) залежить тільки від вибору рішення x (t) і не залежить від t.

Нехай V (t, x), V: G R, є деяка функція. Похідній від функції V у силу системи (1) назвемо функцію V V R, обумовлену рівністю

V (t, x (t)) t.

Лема 1.

Для будь-якого рішення x (t), t, системи (1), графік якого розташований в G, має місце тотожність

V t.

Без доказу.

Лема 2.

Функція U (t, x), U: G R, являє собою перший інтеграл системи (1) тоді й тільки тоді, коли похідна U у силу системи (1) тотожно в G звертається в нуль.

Необхідність. Нехай U (t, x) є перший інтеграл системи (1). Тоді для будь-якого рішення x (t) цієї системи, застосовуючи лему 1 будемо мати тотожності

U

Звідки при t=t одержимо рівність U (t справедливе при всіх значеннях t і x (t). Необхідність доведена.

Достатність. Нехай тепер U при всіх (t, x) Тоді для будь-якого рішення x (t) системи (1) на підставі леми 1 будемо мати тотожності

а з ним і достатність.

З визначення першого інтеграла треба, що постійна на G функція також є першим інтегралом системи (1). Перший інтеграл U (t, x) будемо називати на G, якщо при всіх (t, x) виконується нерівність.

Функцію U (x) будемо називати стаціонарним першим інтегралом системи (1), якщо вона не залежить від t і є першим інтегралом системи (1).

Знайдемо перший інтеграл нашої системи:

Піднесемо до квадрата й виразимо з

y

Покладемо, одержимо

Перевіримо, що функція — це перший інтеграл системи (1), тобто перевіримо виконання тотожності (2)

Знайдемо похідні по t, x, y

Після вище зроблених перетворень одержуємо, що функція — це перший інтеграл системи (1), 2) Покладемо, тобто, де, Q

3) Перевіримо виконання тотожності:

(3), де

Перетворимо (3).

[у нашім випадку ] =

=

[з огляду на всі зроблені позначення] =

=

=

=

[через те, що котре у свою чергу як ми вже показали їсти тотожний нуль]

Таким чином, тотожність (3) щире.

4. Функція, що відбиває

Визначення. Розглянемо систему

(5)

вважає, що права частина якої безперервна й має безперервні частки похідні по. Загальне рішення у формі Коші позначений через). Через позначимо інтервал існування рішення. Нехай

функцією, що відбиває, системи (5) назвемо функцію, обумовлену формулою

Для функції, що відбиває, справедливі властивості:для будь-якого рішення системи (5) вірна тотожність

для функції, що відбиває, F будь-якої системи виконані тотожності

3) функція буде функцією, що відбиває, системи (5) тоді й тільки тоді, коли вона задовольняє системі рівнянь у частинних похідних

і початковій умові

5. Застосування теореми про еквівалентність диференціальних систем

Одержуємо де — будь-яка непарна безперервна функція.

Поряд з диференціальною системою (1) розглянемо обурену систему (2), де — будь-яка безперервна непарна функція. Відомо по [3], що диференціальна система (3) еквівалентна обуреній системі (4), де безперервна скалярна непарна функція задовольняючому рівнянню

Тому що вище вже показано, що функція де {є перший інтеграл} задовольняє цьому рівнянню, те справедлива наступна теорема.

Теорема 1.

Система (1) еквівалентна системі (2) у змісті збігу функції, що відбиває.

Тому що система (1) має дві особливі крапки, у кожній з яких перебуває центр, те й система (2) має центри в цих крапках.

Висновок

У даній курсовій роботі розглянута вложима система з відомим типом крапок спокою, перевірене задоволення загального рішення нашій системі, знайдені перший інтеграл і перевірений виконання тотожності, потім за допомогою теореми 1 доведена еквівалентність диференціальних систем. Сформульовано визначення вложимої системи, першого інтеграла, що відбиває функції й загальні властивості функції, що відбиває. Сформульована теорема за допомогою якої ми довели еквівалентність нашої системи з диференціальною системою.

Список джерел

1. Мироненко В.І. Лінійна залежність функцій уздовж рішень диференціальних рівнянь. — К., 2001.

2. Мироненко В.І. Функція, що відбиває, і періодичні рішення диференціальних рівнянь. — К., 2004.

3. Мироненко В.І. Збурювання диференціальних систем, що не змінюють тимчасових симетрій. — К., 2004 р.

Показати весь текст
Заповнити форму поточною роботою