Схема Бернуллі
Приклад 2. За одну годину автомат виготовляє 20 деталей. За скільки годин імовірність виготовлення хоча б однієї бракованої деталі буде не менше 0.952, якщо імовірність браку будь-якої деталі дорівнює 0.01? Приклад 3. При новому технологічному процесі 80% усієї виготовленої продукції має найвищу якість. Знайти найбільш імовірне число виготовлених виробів найвищої якості серед 250 виготовлених… Читати ще >
Схема Бернуллі (реферат, курсова, диплом, контрольна)
Міністерство освіти і науки України Приватний вищий навчальний заклад
Європейський університет Запорізька філія
Контрольна робота
з дисципліни: Теорія ймовірності і математична статистика
Варіант № 5 — Схема Бернуллі
Виконав Перевірив:
Запоріжжя,
2007р.
СХЕМА БЕРНУЛЛІ
У багатьох задачах теорії ймовірностей, статистики та повсякденної практики треба досліджувати послідовність (серію) п випробувань. Наприклад, випробування «кинуто 1000 однакових монет» можна розглядати як послідовність 1000 більш простих випробувань — «кинута одна монета». При киданні 1000 монет імовірність появи герба або надпису на одній монеті не залежить від того, що з’явиться на інших монетах. Тому можна казати, що у цьому випадку випробування повторюються 1000 разів незалежним чином.
Означення 1. Якщо усі п випробувань проводити в однакових умовах і імовірність появи події А в усіх випробуваннях однакова та не залежить від появи або непояви, А в інших випробуваннях, то таку послідовність незалежних випробувань називають схемою Бернуллі.
Нехай випадкова подія А може з’явитись у кожному випробуванні з імовірністю Р (А) = р або не з’явитись з імовірністю q = Р{А) = 1 — р.
Поставимо задачу: знайти імовірність того, що при п випробуваннях подія А з’явиться т разів і не з’явиться п — т разів. Шукану імовірність позначимо Рп(т).
Спочатку розглянемо появу події А три рази в чотирьох випробуваннях. Можливі такі події
тобто їх Якщо подія А з’явилася 2 рази в 4 випробуваннях, то можливі такі події
У загальному випадку, коли подія А з’являється т разів у п випробуваннях, таких складних подій буде Обчислимо імовірність однієї складної події, наприклад,
Імовірність сумісної появи п незалежних подій дорівнює добутку ймовірностей цих подій згідно з теоремою множення ймовірностей, тобто Кількість таких складних подійі вони несумісні. Тому, згідно з теоремою додавання ймовірностей несумісних подій, маємо Формулу (1) називають формулою Бернуллі. Вона дозволяє знаходити імовірність появи події А т разів при п випробуваннях, які утворюють схему Бернуллі.
Зауваження 1. Імовірність появи події Арп випробуваннях схеми Бернуллі менш т разів знаходять за формулою
Імовірність появи події А не менше т разів можна знайти за формулою або за формулою
Імовірність появи події А хоча б один раз у п випробуваннях доцільно знаходити за формулою Зауваження 2. У багатьох випадках треба знаходити найбільш імовірне значення то числа т появ події А. Це значення т визначається співвідношеннями Число то повинно бути цілим. Якщо (п + 1) р — ціле число, тоді найбільше значення імовірність має при двох числах Зауваження 3. Якщо імовірність появи події А в кожному випробуванні дорівнює р, то кількість п випробувань, які необхідно здійснити, щоб з імовірністю Р можна було стверджувати, що подія, А з’явиться хоча б один раз, знаходять за формулою,
Приклад 1. Прилад складено з 10 блоків, надійність кожного з них 0.8. Блоки можуть виходити з ладу незалежно один від одного. Знайти імовірність того, що а) відмовлять два блоки;
б) відмовить хоча б один блок;
в) відмовлять не менше двох блоків.
Розв’язання. Позначимо за подію А відмову блока. Тоді імовірність події А за умовою прикладу буде
Р (А) =р = 1−0.8 = 0.2, тому д = 1-р = 1−0.2=0.8.
Згідно з умовою задачі п = 10. Використовуючи формулу Бернуллі та Зауваження 1, одержимо
Приклад 2. За одну годину автомат виготовляє 20 деталей. За скільки годин імовірність виготовлення хоча б однієї бракованої деталі буде не менше 0.952, якщо імовірність браку будь-якої деталі дорівнює 0.01?
Розв’язання. Застосовуючи формулу (2), знайдемо спочатку таку кількість виготовлених деталей, щоб з імовірністю р = 0.952 можна було стверджувати про наявність хоча б однієї бракованої деталі, якщо імовірність браку за умовою р = 0.01
Отже, за час (годин) автомат з імовірністю 0.952 виготовить хоча б одну браковану деталь.
Приклад 3. При новому технологічному процесі 80% усієї виготовленої продукції має найвищу якість. Знайти найбільш імовірне число виготовлених виробів найвищої якості серед 250 виготовлених виробів.
Розв’язання. Позначимо шукане число то-Згідно Зауваження
За умовою прикладу п = 250, р = 0.8, q — 0.2, тому Але то повинно бути цілим числом, тому то = 200.
СПИСОК ВИКОРИСТАНОІ ЛІТЕРАТУРИ
1. Барковський В. В., Барковська Н. В., Лопатін О.К. теорія ймовірностей та математична статистика. — К.: ЦУЛ, 2002. — 448с.
2. Гмурман В. Е. Теория вероятностей и математическая статистика. — М.: Высшая школа, 1980.
3. Гмурман В. Е. Руководство к решению задач по теории вероятностей и математической статистике. — М.: Высшая школа, 1975.
4. Гнеденко Б. В. Курс теории вероятностей. — М.: наука, 1988.
5. Леоненко М. М., Мішура Ю.С. та ін. Теоретико-ймовірностні та статистичні методи в економетриці та фінансовій математиці. — К.: Інформтехніка, 1995.