Математичні основи обчислення тарифних ставок
Еквівалентність фінансових зобов’язань як еквівалентність сподіваних значень. Зобов’язання страхувальників полягають у сплаті страхових премій. Зобов’язання страховика оплачувати позови страхувальника. Нехай р означає суму зібраних страховиком премій, Х-сумарні виплати страховика. Природно вважати, що справедливою платою за ризик страховика є сподіване (середнє) значення випадкової величини X. Читати ще >
Математичні основи обчислення тарифних ставок (реферат, курсова, диплом, контрольна)
МАТЕМАТИЧНІ ОСНОВИ
ОБЧИСЛЕННЯ ТАРИФНИХ СТАВОК Поняття випадкової величини. Страхування виникає там, де існують явища і процеси випадкової природи. Тому більшість величин, що розглядаються у страхуванні, є випадковими величинами. З математичного погляду випадкова величина — це змінна, яка може набувати певних значень з певною ймовірністю.
Випадкова величина повністю описується своєю функцією розподілу. Функцією розподілу випадкової величини або інтегральною функцією) називається функція, яка кожному числу х ставить у відповідність імовірність того, що абуде значення, меншого за х:
.
Функція Fвизначена при всіх значеннях аргументу x і має такі властивості:
;
якщо х<у, то F
F.
.F l;
F 0;
P{a alt="" src="data:image/*-base64,AQAJAAADrwAAAAIAHAAAAAAABQAAAAkCAAAAAAUAAAACAQEAAAAFAAAAAQL///8ABQAAAC4BGAAAAAUAAAALAgAAAAAFAAAADAKAAUABEgAAACYGDwAaAP////8AABAAAADA////5v///wABAABmAQAACwAAACYGDwAMAE1hdGhUeXBlAAAgABwAAAD7AoD+AAAAAAAAkAEAAAACAAIAEFN5bWJvbAB3QAAAAKEFCsUWQ8d3H0PHdyDAyXcAADAABAAAAC0BAAAIAAAAMgpAATQAAQAAAKN5EgAAACYGDwAZAE1hdGhUeXBlVVUNAAMBAQMBCgEChmQiAAAACgAAACYGDwAKAP////8BAAAAAAAcAAAA+wIQAAcAAAAAALwCAAAAzAECAiJTeXN0ZW0AAAAACgAhAIoBAAAAAP////+E/BIAKULHdwQAAAAtAQEABAAAAPABAAADAAAAAAA=">b}=FF.
Серед випадкових величин можна виокремити два основні типи — дискретні та абсолютно неперервні.
Дискретною називається випадкова величина, яка може набувати скінченної або зліченної множини значень. Дискретними є, наприклад, такі величини: кількість позовів (страхових випадків) у поточному році кількість договорів, що їх буде укладено страховиком.
Якщо функцію розподілу Fвипадкової величини ожна подати у вигляді.
,.
де р — деяка невід'ємна функція, то випадкова величина азивається абсолютно неперервною, а функція р — щільністю розподілу випадкової величини бсолютно неперервними можна вважати, наприклад, розмір майбутніх прибутків страховика, а також тривалість очікування між двома послідовними страховими випадками.
Числові характеристики випадкових величин. У страховій практиці, як правило, нас цікавлять не самі випадкові величини, а деякі їх числові макрохарактеристики. Найважливішими з них є математичне сподівання та дисперсія.
Математичне сподівання (його називають також середнім, або сподіваним, значенням) — це середньозважене за ймовірністю значення випадкової величини. Для дискретних випадкових величин математичне сподівання обчислюється з формулою:
М[math xmlns="http://www.w3.org/1998/Math/MathML" display="block" >ixipi ,.
де хі - значення, яких набуває випадкова величинарі - ймовірності їх реалізації. Для абсолютно неперервних випадкових величин математичне сподівання подається так:
= ,.
де рщільність випадкової величини кщо випадкова величина невід'ємна (0 математичне сподівання можна обчислити за формулою:
=
.
.Для будь-яких сталих a, b та випадкових величин виконуються такі властивості математичного сподівання:
М[а] = а;
М[bb;
M[[[p>
Дисперсія характеризує відхилення випадкової величини ід її середнього значення й обчислюється як математичне сподівання квадрата відхилення цієї величини від й математичного сподівання:
.
Дисперсія задовольняє такі співвідношення:
;
;
;
,.
де а, b — довільні сталівипадкова величина. Якщо випадкова величина невід'ємна, дисперсію можна обчислити за формулою.
.
Поряд з дисперсією часто використовують похідні поняття — стандартне відхилення та коефіцієнт варіації. Стандартним, або середньоквадратичним, відхиленням називають корінь квадратний із дисперсії:
.
Відношення стандартного відхилення випадкової величини о модуля математичного сподівання називається коефіцієнтом варіації.
.
Для випадкової величини вантилем рівня, а (або вантилем) називається величина ta, яка при заданому значенні довірчої ймовірності коренем рівняння.
.
Незалежність випадкових величин. Випадкові величини, а азиваються незалежними, якщо за відомим значенням величини е можна зробити жодних висновків стосовно значення навпаки, значення іяк не впливає на обізнаність із величиною ормально випадкові величини, а азиваються незалежними, якщо при будь-яких значеннях, а та b імовірність події р{а, b} є добутком імовірностей подій р{а}та Р{b}:
.
Якщо випадкові величини не задовольняють наведену щойно умову, то вони називаються залежними. Прикладом залежних випадкових величин є кількість позовів та сумарний розмір виплат. Відсутність позовів означає відсутність виплат. Нехай ількість позовів (кількість виплат) у поточному році, відповідна сума виплат у страховика. Нехай з імовірністю 10% протягом року виплат у страховика немає Цей факт можна записати кількома способами:
.
Отже, Р{1, 1 грн}>Р{1 грн}Р{1}. Це означає, що випадкові величини алежні. Незалежними випадковими величинами можуть вважатись, наприклад, кількості позовів з різних видів страхування.
Наведемо дві важливі властивості. Якщо випадкові величини, а езалежні, то для них виконуються такі співвідношення:
.
Статистичні оцінки. Часто ми не маємо інформації про реальний розподіл випадкової величини ле маємо деяку сукупність спостережень, у результаті яких вона набуває значень х1, х2, х3, …, хn. Ця сукупність значень називається вибіркою, а величини.
.
і.
.
відповідно вибірковим (емпіричним) середнім та незсуненою вибірковою (емпіричною) дисперсією. Вибіркове середнє використовують для оцінювання математичного сподівання:
,.
незсунена вибіркова дисперсія є оцінкою дисперсії випадкової.
величини:
.
Принципи обчислення тарифних ставок. В актуарній практиці використовуються найрізноманітніші методи обчислення тарифних ставок. Усі вони базуються на принципі еквівалентності фінансових зобов’язань страхувальника і страховика. Але парадокс полягає в тому, що не існує єдиного погляду на те, як тлумачити цей загальновизнаний принцип страхування. Розглянемо найпоширеніші підходи до трактування принципу еквівалентності.
Еквівалентність фінансових зобов’язань як еквівалентність сподіваних значень. Зобов’язання страхувальників полягають у сплаті страхових премій. Зобов’язання страховика оплачувати позови страхувальника. Нехай р означає суму зібраних страховиком премій, Х-сумарні виплати страховика. Природно вважати, що справедливою платою за ризик страховика є сподіване (середнє) значення випадкової величини X:
.
У такому вигляді принцип еквівалентності доволі часто використовується у страхуванні життя та деяких інших галузях масового страхування.
Еквівалентність зобов’язань з погляду теорії розорення.
Зобов’язання страхувальників мають безумовний характер. Купуючи поліс, страхувальник звільняє себе від ризику несподіваних витрат. Витрати страховика, навпаки, непередбачувані. Страховик бере на себе ризик, який полягає в тому, що його виплати будуть значно більші за М[Х]. Тому страховик вправі вимагати додаткової плати за можливі збитки — ризикову надбавку L, із цього погляду справджується співвідношення:
.
Постає запитання: якими мають бути розміри ризикової надбавки L та страхової премії р? Щоб відповісти на нього, доцільно звернутися до теорії розорення.
Факт розорення страховика описується співвідношенням U + р < X, де U — розмір власних коштів страховика. Відповідно ймовірність розорення дорівнює Р{U + р < X}.
Отже, якщо страховик намагається досягнути ймовірності розорення о він має забезпечити розмір страхових премій р таким, щоб виконувалося співвідношення: Р{U + р < X}= >
Таке розуміння принципу еквівалентності є найпоширенішим у сьогоденній практиці. Основним недоліком цього підходу є досить висока абстрактність поняття «ймовірність розорення». Яка ймовірність розорення страховика вважається достатньою — 10, 1 чи 0,1%? На це запитання дуже важко дати аргументовану відповідь. Зменшення ймовірності розорення з 2 до 0,2% для страховика не має принципового значення, хоча може призвести до необхідності збільшити ризикову надбавку в півтора раза.
Принцип еквівалентності зобов’язань у термінах теорії розорення має математично обгрунтовану форму, але застосування його в актуарній практиці може призводити до значних коливань розрахункових значень.
Еквівалентність зобов’язань з погляду теорії корисності. Нині дедалі популярнішим стає підхід до формалізації принципу еквівалентності фінансових зобов’язань страхувальника і страховика, що грунтується на теорії корисності.
Основним поняттям цієї теорії є функція корисності. Функцією корисності називають функцію u (х), яка має такі властивості:
функція й зростаюча — u (х) > u (у) при х > у;
функція й задовольняє нерівність Єнсена М[u (х)]<u (М[х]);
функція й задовольняє умову нульової корисності u (о)=0.
Функція корисності визначає ступінь важливості для страховика певних грошових сум. Вона має суб'єктивний характер, включаючи психологічний компонент.
За допомогою функції корисності принцип еквівалентності можна записати так:
.
Отже, сподівана корисність капіталу страховика після прийняття ризиків не повинна зменшитися порівняно з корисністю початкового капіталу. На практиці часто застосовують експоненціальну u (х)=1-е-ах та квадратичну u (х) = ах-х2 функції корисності.
Головна проблема при практичному використанні принципу еквівалентності в термінах теорії корисності - відшукання адекватної функції корисності.