Головна » Реферати » Реферати 1 курс » Вища математика |
Невласні інтеграли. Поняття та різновиди невласних інтегралів
Згідно з теоремою існування визначеного інтеграла цей інтеграл існує, якщо виконані умови:
1) відрізок інтегрування [а, b] скінчений;
2) підінтегральна функція f(x) неперервна або обмежена і має скінченну кількість точок розриву. Якщо хоч би одна із умов не виконується, то визначений інтеграл називають невласним.
Якщо не виконується перша умова, тобто b = ∞ або а = ∞ або а = -∞ та b = ∞, то інтеграли називають невласними інтегралами з нескінченними межами.
Якщо не виконується лише друга умова, то підінтегральна функція f(x) має точки розриву другого роду на відрізку інтегрування [а, b]...........
Повна інформація про роботу
Характеристика роботи
реферат "Невласні інтеграли. Поняття та різновиди невласних інтегралів" з предмету "Вища математика". Робота є оригінальною та абсолютно унікальною, тобто знайти її на інших ресурсах мережі Інтернет просто неможливо. Дата та час публікації: 06.07.2010 в 17:28. Автором даного матеріалу є Олег Вернадський. З моменту опублікування роботи її переглянуто 530 та скачано 50 раз(ів). Для ознайомлення з відгуками щодо роботи натисніть [перейти до коментарів]. По п'ятибальній шкалі користувачі порталу оцінили роботу в "5.0" балів.
Коментар автора роботи
Виконував дуже старанно, намагався детально розкрити всі пункти. Наш найвимогливіший викладач в університеті (Віктор Анатолійович) оцінив на 100 балів...