Головна » Реферати » Реферати 2 курс » Математичне програмування |
Основні властивості розв’язків задачі лінійного програмування
Властивість 4. (Теорема 4.) Якщо – кутова точка багатогранника розв’язків, то вектори в розкладі , , що відповідають додатнім є лінійно незалежними.
З наведених властивостей маємо:
якщо функціонал задачі лінійного програмування обмежений на багатограннику розв’язків, то:
1) існує така кутова точка багатогранника розв’язків, в якій лінійний функціонал досягає свого оптимального значення;
2) кожний опорний план відповідає кутовій точці багатогранника розв’язків. Тому, для розв’язання задачі лінійного програмування необхідно досліджувати лише кутові точки багатогранника (опорні плани), не включаючи до розгляду внутрішні точки множини допустимих планів.
Повна інформація про роботу
конспект "Основні властивості розв’язків задачі лінійного програмування" з предмету "Математичне програмування". Робота є оригінальною та абсолютно унікальною, тобто знайти її на інших ресурсах мережі Інтернет просто неможливо. Дата та час публікації: 18.09.2010 в 23:02. Автором даного матеріалу є Олег Вернадський. З моменту опублікування роботи її переглянуто 585 та скачано 49 раз(ів). Для ознайомлення з відгуками щодо роботи натисніть [перейти до коментарів]. По п'ятибальній шкалі користувачі порталу оцінили роботу в "5.0" балів.
Виконував дуже старанно, намагався детально розкрити всі пункти. Наш найвимогливіший викладач в університеті (Віктор Анатолійович) оцінив на 100 балів...